

Chain of Infection C. Fiutem. APIC Text (2021) INFECTIOUS AGENT/Causative Agent A microbial organism with the ability to cause disease. The greater the organism's virulence (ability to grow and multiply), invasiveness (ability to enter tissue) and pathogenicity (ability to cause disease), the greater the possibility that the organism will cause an infection. SUSCEPTIBLE HOST SUSCEPTIBLE HOST incroorganism invating the body, multiplying, and resulting in infection. The host is susceptible to the disease, lacking Susceptable Host immunity or physical overcome the invasion by the pathogenic Infectious Agent ervoir RESERVOIR A place within which microorganisms can thrive and reproduce. C Chain of Infection pathogenic microorganism. Portal of Entry al of Exit Por PORTAL OF ENTRY An opening allowing the microorganism to enter the host. PORTAL OF EXIT A place of exit providing a way for a microorganism to leave the reservoir. Mode of Tran MODE OF TRANSMISSION Method of transfer by which the organism moves or is carried fr e place to another. Exposure Contamination Infection **Infectious Disease**

Boyce. AJIC (2013); JAM. Dent Econ (2016); Pidot. Sci Trans Med (2018); FDA (7/2/2020); MMWR (8/5/2020)

other body fluids that might be co infectious	& procedures based on concept that all blood & ontaminated with blood should be treated as
Dental Category	ional bloodborne pathogen (BBP) risk & target Percentage Positive HBV Serologic Results
Oral Surgeons	30 - 38%
General dentists	17-18%
Dental hygienists	16.9%
Dental assistants	12.9%
Clerical (dual jobs)	8.9%
Lab technicians	14.2%
General population	2-4%
	Ahtone, et al. JAMA (198 Schiff, et al. JAMA (1986

STANDARD PRECAUTIONS (1991)

Foundation of infection control -1st step in breaking chain of infection
 Combine precautions that include:

a. major components of universal precautions to reduce BBP risk PLUS

b. body substance isolation (transmission precautions)

- reduce risk of pathogen transmission from moist body surfaces □ Similar to universal precautions --- used for care of all patients

regardless of diagnosis or presumed infection status

 blood, body fluids, secretions, excretions except sweat, regardless of whether or not contain blood
 non-intact skin

non-intact skin
 mucous membranes

CDC (1991; 2003;2020)

26

Airborne Material Definitions

Spatter:

- □ Visible drops of liquid or body fluid expelled forcibly; settle quickly
- □ All visible material from patient's mouth during treatment - also referred to as "*splatter*" (Micik, et al.1969)
- >50 µm in diameter; behave airborne in ballistic manner
 ejected forcibly from operating site; arc in bullet-like trajectory until they contact a surface or floor
- Main component of dental spatter is water
 potentially infectious material from pt c/in water

Airborne Material Definitions

Droplets:

- \square 30-50 µ; intermediate in size between spatter and aerosols
- May contain microorganisms, but tend to quickly settle out
- Potential infection risk generally limited to those in close proximity to droplet source
- $\hfill\square$ Short range transmission
- Droplets can still be infectious
 - sputum droplets from person c active TB evaporate become aerosols
 - influenza (1985 study: documented high flu incidence in RDH's)
 - noroviruses

32

Airborne Material Definitions

Aerosols:

- □ Also often referred to as "droplet nuclei"
- □ Form from evaporation of larger droplets
- $\hfill\square$ Respirable size (<5 $\mu m)$ generated by humans & environmental sources
- □ Can remain airborne & viable for extended periods and distances (>10 ft) in indoor environments (SARS-CoV-2 6 ft or more)
- $\hfill\square$ Airborne period dependent on size, weight, & air currents
- \Box SARS-CoV-2 viral RNA in droplets <5 μ m detected in air
- Aerosol transmission of infection can occur over extended distances/time
 Generated in dentistry from handpieces, ultrasonic scalers, air water syringes

Aerosols vs. Droplets	Aerosol	Droplet	
	*	*	
Diameter	< 5 µm	>5 µm	
How long can it stay aloft?	Stays in air minutes to hours	Falls within seconds to minutes	
How far can it travel?	Greater than 6 feet	Less than 6 feet	
Efficiency of removal by masks and filters	Filtering more difficult	Filtered more easily	
Where it deposits in respiratory system*	Inhaled into respiratory system; potential to be inhaled into the lower respiratory tract (bronchi & alveoli)	Sprayed onto body in form of contact transmission; tend to remain trapped in the upper respiratory tract (oropharynx — nose and throat)	
*Recognition of aerosol transmission of infectious agents: A commentary https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-019-3707-y			

COVID-19 Is Not The Flu:			
	COVID-19	Seasonal Influenza	
Type of Disease	Primarily pulmonary; also, can infect multiple organs/systems (lungs, cardiovascular; CNS, kidneys, etc.)	Pulmonary	
Target cell receptors	ACEII receptors (present throughout body)	Sialic acid receptors	
Potential Infection Sequelae	Possible severe long-term sequelae for severe symptomatic, mildly symptomatic, & asymptomatic disease	Pneumonia	
Ro: Infectivity Potential	Exponential: Original strain: Ro = 2.79; Delta:5-6; Omicron: 7-8	Linear: Ro = 1–1.5	
Incubation Time	1-14 days (typically 5-6 days) Omicron: ~ 3 days	1-4 days	
Hospitalization Rate	19-20% (depending on multiple factors)	2% (primarily pneumonia)	
Case Fatality Rate	3.1 % (8/13/20) 1.8 % (3/18/21) 1.78 % (7/21/21)	0.06-0.1% (2019-2020)	
Vaccine	Yes	Yes (CDC/WHO)	

Representative Occupational Respiratory Infections				
TO THAT A THE				
Disease	Etiology	Transmission		
Tuberculosis	Mycobacterium tuberculosis	Droplet nuclei from coughing		
Common cold	Rhinoviruses; Adenoviruses	Droplets from coughing/sneezing; contaminated surfaces		
Influenza	Influenza viruses	Spatter & droplets from coughing; contaminated surfaces		
Severe Acute Respiratory Syndrome	SARS Coronavirus-1 SARS-CoV-2	Airborne droplets; possible aerosols; contaminated surfaces		
Pertussis	Bordetella pertussis	Droplets from coughing /sneezing		
Legionnaires' Diseases	Legionella pneumophila	Breathing in mist or vapor containing bacteria; not spread person-to-person		
Rubeola (Measles)	Rubeola virus	Aerosols from infectious persons		

OSHA Respiratory Protection Plan

If using N95 respirators, each employer must:

- Develop and implement written respiratory protection plan
- Medical surveillance determine if employee is fit to wear a respirator
- Provide respirators when necessary to protect employees
- Training proper use, limitations, disposal, hazards
- Fit test initially and annually

Provide medical evaluations at no cost to employees

OSHA Respiratory Protection Std 1910.134 (1998)

 Most N95 respirators are manufactured for use in construction & other industrial type jobs that expose workers to dust and small particles

 regulated by the National Personal Protective Technology Laboratory (NPPTL) in the National Institute for Occupational Safety and Health (NIOSH),

46

N95 (95%) = FFP2 / P2 (94%)	Respirator Standard	Filter Capacity (removes x% of of all particles that are 0.3 microns in diameter or larger)
	FFP1 & P1	At least 80%
AREA BELLE	FFP2 & P2	At least 94%
199 (99%) = FFP3 (99%)	N95	At least 95%
00 (99.97%) = P3 (99.95%)	N99 & FFP3	At least 99%
and the	P3	At least 99.95%
A la A	N100	At least 99.97%
KN95 (95%) = N95 (95%)	In prac - cou	theoretically, same std specifications as NIOSH N95 & EU FFP2 respirators etice, not necessarily true: Interfeit products eck for good face seal; padding for comfort; face straps c adequate strength & tension

50

FDA Revokes Emergency Use Authorizations for Certain Respirators and Decontamination Systems as Access to N95s Increases Nationwide

 Revokes EUAs of all non-NIOSH-approved disposable respirators, including imported, disposable respirators, such as KN95s
 Also revoked EUAs for decontamination & bioburden reduction systems

□ "Early in the public health emergency, there was a need to issue emergency authorizations (EUAs) for non-NIOSH-approved respirators as well as decontamination and bioburden reduction systems to disinfect disposable respirators. Today, those conditions no longer exist. Our national supply of NIOSH-approved N95s is more accessible to our health care workers every day." (Dr. S. Schwartz, FDA) FDA In Brief (June 30, 2021)

Counterfeit Respirators / Misrepresentation of NIOSH-Approval (CDC/NIOSH)

How to identify a NIOSH-approved respirator:

- 1. An approval label on or c/in respirator packaging
- 2. Abbreviated approval on the Filtering Facepiece Respirator (FFR) itself
- 3. Verify approval number on NIOSH Certified Equipment List or
- NIOSH Trusted Source to determine if respirator is NIOSH approved 4. NIOSH-approved FFRs will always have one of following designations: • N95, N99, N100, R95, R99, R100, P95, P99, P100

Representative NIOSH-Approved

52

Respirator Fit Testing

■ Qualitative fit testing (QLFT)

- ✓ determines the brand and respirator size of the user
- ✓ cannot determine limit of protection-factor or numerical results
- ✓ chances of user deception

Main difference: quantitative testing objectively measures the amount of leakage (quantity), while qualitative testing relies subjectively on the user's taste and smell to detect leakage

■ Quantitative fit testing (QNFT)

✓ measures precise amount of leakage into any tight-fitting facepieces \checkmark instead of relying on bitter-tasting chemicals & your senses, this test is performed by a machine calculating the measurements ✓ facepiece is attached to a probe, which is connected to the measuring machine by a hose

Guidance for Preparing Workplaces for SARS-CoV-2 and COVID-19

Implement workplace controls – "use hierarchy of controls"

- □ Engineering controls involve isolating employees from workplace hazards
 - high-efficiency air filters
 - increasing workplace ventilation rates
 - installing physical barriers (i.e. clear plastic sneeze guards)
 - specialized negative pressure ventilation for aerosol -

generating procedures OSHA (3/2020) https://www.osha.gov/Publications/OSHA3990.pdf?...

59

Improving Air Quality

Consult HVAC specialist to:

- Increase filtration efficiency
- · Increase percent of outdoor air supplied (may be more expensive)
- Limit use of demand-controlled ventilation during occupied hours and up to 2 hours post occupancy
- Properly maintain ventilation system (moving air from clean area to contaminated area)
- Apply hospital precautions to dental facilities as much as possible
- Consider use of portable HEPA air filtration unit
- Consider upper-room ultraviolet germicidal irradiation (UVGI) as adjunct to higher ventilation rates.

CDC. Guidance for Dental Settings (December 4, 2020)

ASHRAE EPIDEMIC TASK FORCE

(American Society of Heating, Refrigerating and Air-Conditioning Engineers)

Core Recommendations for Reducing Airborne

Infectious Aerosol Exposure (Jan 6, 2021) MERV = Minimum Efficiency Reporting Value

2. Ventilation, Filtration, Air Cleaning

- 2.1 Provide and maintain at least required minimum outdoor airflow rates for ventilations specified by applicable codes and standards
- 2.2 Use combinations of filters and air cleaners that achieve MERV 13 or better for air recirculated by HVAC systems
- 2.3 Only use air cleaners for which evidence of effectiveness and safety is clear
- 2.4 Select control options, including standalone filters and air cleaners, that provide desired exposure reduction while minimizing associated energy penalties

61

What is the best MERV rating to use?				
MERV Rating	Description	Application	Typical Air Filter Material	
MERV-1 to MERV-4	Basic filter Blocks carpet fibers and lint, but unable to block out much else.	 Light Residential Window/Split AC 	 Fiberglass Washable aluminum Synthetic mesh 	
MERV-5 to MERV-8	Typical filter Blocks out common dust, pollen, and some mold spores.	 Typical Residential Typical Commercial 	 Pleated cotton Polyester	
MERV-9 to MERV-12 (Filters down to 1.0–3.0 μ particle size)	Better filter Blocks out most mold spores, smog, fine dust, and pet dander.	 Allergies Better Residential Better Commercial 	 Pleated cotton Microfine fiberglass Usually 2" thick or more 	
MERV-13 to MERV-16 (Filters down to 0.3-1.0µ particle size)	Superior filter Blocks out bacteria, viruses, smoke, and other microscopic particles	 Severe Allergies Hospitals Smoking Lounges 	 Pleated cotton Microfine fiberglass Usually 4" thick or more 	

Steps to Reducing Aerosols in Dentistry: Documented Controls Dental aerosols can include, viruses, blood, supra- & subgingival organisms □ Use of **rubber dam** can greatly reduce saliva & blood contamination □ HVE shown to reduce aerosols by more than 90% from operative site* - Must have large opening (usually 8 mm or more) - Attached to evacuation system that will remove up to 100cu ft air per min. - System capacity can be a factor in HVE effectiveness *Micik RE et. al. Studies on dental aerobiology, I: bacterial aerosols generated during dental procedures. J Dent Res. 1969; 48: 49-56 Safe-Flo™ Saliva Ejectors and Valves Palmero HVEsolo

Error	Problem	
Improper instrument cleaning and potentially compromise the sterilization process	Biological and other debris can shield adherent microbes and potentially compromise the sterilization process	Sterilization Process Problems
Improper packaging	Examples: wrong type material for method; too many items in package; excessive amounts of wrap material	
Overloaded sterilizer	Can prevent thorough contact of sterilizing agent with all items in unit	
Inadequate Maintenance	Critical area; example issues include worn gaskets and seals	
Improper sterilization equipment	Use of non-FDA approved equipment	
Person	in Charge !!	-

Wet or Dry Packaged Instruments?

- Need to dry instruments thoroughly prior to packaging & sterilization
 Sterilizers calibrated to remove only the amount of moisture they introduce into chamber
- ${\ensuremath{\bullet}}$ What is a "wet pack:" moisture on/in pack when removed from autoclave relatively common problem; multiple causes
 can cause contamination issues; excessive moisture can act as pathway for microbes

Representative Causes	Reasons for Cause
Dense instrument set	Steam cannot readily escape
Overloading sterilizer chamber	Insufficient space for steam to penetrate & escape
Wet instruments or packaging going into sterilizer	Insufficient drying of packaging
Not following medical device IFUs	Some IFUs require dry times
Insufficient cooling times allotted for sterilized items	Transporting hot items to cool surfaces or environment can result in condensation
	3M Healthcare (2017)

	Procedure	Representative 1980 Practice	Representative 2018 Practice
Manua	al instrument cleaning	Often primary method	Minimal
Chemica	al (i.e. cold) sterilization	Common glutaraldehyde use	Minimal or no use in practice
U	Itrasonic cleaning	Used in conjunction with manual	Often primary method
In	strument washer	Not available	Increasing presence in practices
Biologie	cal monitoring for heat sterilization	Very few practices spore testing; infrequent intervals	Weekly spore testing required by regulatory agencies
	for cleaning processes for to sterilization	Visual inspection of instruments	Visual inspection + artificial soil test strips for ultra-sonics and instrument washers
			Molinari. Dent Today (2/2019)
Spaul	ding Classificat	tion (1970's)	
Category	Definition	Examples in Dentistry	Comments
		, enter Surgical instruments, periodontal sca	

Critical	Penetrate soft tissue, contact bone, enter into or contact the bloodstream or other normally sterile tissue.	Surgical instruments, periodontal scalers, scalpels, surgical dental burs	Have the greatest risk of transmitting infection—clean and heat sterilize.
Semicritical	Contact mucous membranes or nonintact skin, but will not penetrate soft tissue, contact bone, or enter into or contact the bloodstream or other normally sterile tissue.	Dental mouth mirror, amalgam condenser, reusable dental impression trays, dental handpieces.*	Have a lower risk of transmission—clean and heat sterilize. If a semicritical item is heat-sensitive, it should, at a minimum, be processed with high-level disinfection.
Noncritical	Contact with intact skin.	Radiograph head/cone, blood pressure cuff, facebow, pulse oximeter.	Pose the least risk of transmission of infection—clean and disinfect or use disposable barrier protection.

Environmental Surface Asepsis: Historical Role of Hospital Surfaces in HAI

 Surface contamination important role in MO transmission: MRSA, VRE, noroviruses, *C. difficile*, & *Acinetobacter* Challenge: to repeatedly eliminate surface contamination

- HBV & HCV transmission: contact with environmental surfaces; outbreaks among hemodialysis unit pts & staff
- □ Is SARS-CoV-2 transmitted from contaminated surfaces?

Weber, Rutala, et al. AJIC (2010) Bond, et al. Lancet (1981): Otter, et al. AJIC (2013) Paintsil. JID (2014); Van Doremalen N, et al. NEJM.3/2020)

82

Microbial Persistence on D	ry Inanimate Surfaces
Microorganism	Duration of Persistence
COVID-19 (SARS-CoV-2) Van Dor	2-3 days (plastics/ s. steel surfaces) 24 hrs (cardboard) emalen N, et al. NEJM.3/2020)
□ Staphylococcus aureus, incl. MRSA	7 days – 7 months
□ <i>Enterococcus sp.</i> (incl. VRE)	5 days – 4 months
□ Escherichia coli	1.5 hrs. – 16 months
Influenza viruses	1 – 2 days
Rhinoviruses	2 hrs – 24hrs
I Herpes simplex viruses (HSV)	4 hrs. – 8 wks.
Hepatitis B Virus (HBV)	> 1 wk. (in blood)
Hepatitis C Virus (HCV)	16 hrs. – 6 wks. (in blood)
Hepatitis A Virus (HAV)	2 hrs. – 2 months
□ HIV	few minutes

Surface Covers:

a. Use appropriate disposable cover materials b. Change between patients

Advantages

- 1. Prevents contamination
- 2. Protects difficult-to-clean surfaces
- 3. Less time-consuming
- 4. Reduces chemical use
- 5. More eco-friendly choices

Disadvantages

- 1. Need varied sizes / types
- 2. Can have non-biodegradable plastics
- 3. Esthetically undesirable?
- 4. Additional costs over
- chemical sprays?

85

Properties of an IDEAL Surface Disinfectant

- broad antimicrobial spectrum
- rapidly lethal for all microbial forms
- excellent cleaner: not affected by organic matter
- non-toxic; -allergenic; easy to use
- compatibility c treated surfaces
- residual effect on treated surfaces
- odorless
- environmentally friendly

- surface wipes can dry out during use
- must remain wet on treated surfaces to be effective
- clean surfaces before initiating use of new disinfectant type

List N: Disinfectants for Use Against SARS-CoV-2

https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-againstsars-cov-2

"All products on this list meet EPA's criteria for use against SARS-CoV-2, the virus that causes COVID-19." (EPA. 4/2/2020)

- 1. Finding a Product
- enter the first two sets of EPA registration number into EPA search bar.
 example, if EPA Reg. No. 12345-12 is on List N, you can buy EPA Reg.
 No. 12345-12-2567 and know you're getting an equivalent product
 Can find number by looking for the EPA Reg. No. on product label.

2. Using Other Products

- if can't find a product on list to use against SARS-CoV-2, look at a different product's label to confirm it has an EPA registration number and that human coronavirus is listed as a target pathogen.

88

Characteristics of Representative Waterborne Hospital Outbreaks in Patients					
Reservoir	Microorganism	Contamination/ Transmission	Pt. Population	Infection Type	Study Type
Bathing tub drain	Ps. aeruginosa	Contaminated tub water from drain	Leukemia pts.	Bloodstream, UTI, pneumonia	Outbreak - strong causation
Dialysis water supply	Burkholderia cepacia	Improper cleaning; RO connection leak	Hemodialyis pts.	Bacteremia	Outbreak – strong causation
Heater-cooler unit for cardiac surgery	Mycobacterium chimaera	Airborne – unit water tank contamination	Open-heart surgery pts.	Endocarditis; bloodstream & graft infections	Outbreak- strong causation
Hospital water system	L. pneumophila	Contaminated water supply	Immune- compromised pts.; Elderly pts	Pneumonia	Multiple case series- strong causation
Potable water	M. avium	Contaminated water	Pts with AIDS & non-AIDS	Disseminated infection	Outbreak- strong causation
Sink	Serratia marcescens	Contaminated soap & bottles	NICU infants	Eye, respiratory, blood, rectum	Outbreak- strong causation
		ŀ	Kanamori, et al. Clin	Infect Dis 2016; 62:	1423-1435

Slide 93

IR3 Thesse references are to websites where the images were pulled from, but are not actual permissions. Not sure how legal will look at this, but suggest that we have other images available to drop in. The lower left scaler is an image that Crosstex purchase from Shutterstock, so we can take that one. Ilene Russo, 12/15/2020

95

Biofilm Characteristics

- Highly complex microbial structural entity
- Organisms provide nutrients to each other
- Exists in all environments, including water and solids
- Microorganisms grow very well in stagnant water
- Flushing does not reliably improve dental water quality
- Most MO's from public water supply; not high risk for healthy persons
 Increasing # of immune compromised dental pts
- waterborne microbes as "opportunistic pathogens"
 - Pseudomonas sp. Legionella, non-tubercle mycobacteria (NTM)

From: Molinari and Harte. Practical Infection Control In Dentistry (2010)

Microbial Etiology	Dental Facility	Outcome/Impact
Ps. aeruginosa	Dental practice	Gingival infections in 2 immune compromised patients after restorative treatment ¹
L. pneumophila	Dental practice	Fatal infection in 82-yr old patient ²
M. abscessus	Pediatric dental practice	Odontogenic infections after pulpotomies using ta water (20 children) ³
M. abscessus	Pediatric dental practice	Odontogenic infections after pulpotomies using ta water (72 children) ⁴
L. pneumophila	Hospital dental clinic	Fatal infection in elderly, immune compromised patientt ⁵

Complete DUWL Approach

Daily Best Practic

Test

Remediate (if needed)

- D Planning & Treatment of your water
 - Decide what type of product(s) work best
 - Ensure that product IFU's are being followed
 - Basic IC principles used
 - Ensure source water is clean
- Follow daily best practices
 - Follow MIFUs for daily & weekly maintenance
 - Do not use waterline heaters
 - When recommended, shock all waterlines to remove biofilm
 - Flush lines at the beginning/end of day for at least 2-3 minutes
 - Flush lines for 20-30 seconds between each patient
 - Sterile water/saline when irrigating open surgical sites and cutting bone during surgical procedures
- □ Monitoring system in place to ensure protocol is effective

100

101

Clinical Monitoring of DUWL: OSAP White Paper

Recommended the following:

 Periodic monitoring & inspection at least monthly after installation of treatment devices, or initiation of new protocols

- When monitoring shows acceptable counts for 2 consecutive monthly cycles, can reduce testing frequency (not less than every 3 months)
- When a dental unit exceeds action limit, treat according to MIFU, and re-test immediately after

Mills S, Porteous N, Zawada J; OSAP: October 31, 2018 https://osapidics.scholasticahq.com/article/5075-dental-unit-water-quality-organization-for-safety-asepsis-andprevention-white-paper-and-recommendations-2018

Science The One Where Facts Matter More Than Opinions

